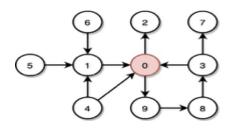
DIRECTION AWARE POSITIONAL AND STRUCTURAL ENCODING FOR DIRECTED GRAPH NEURAL NETWORKS

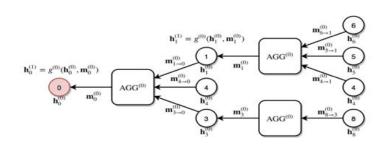
Yonas Sium ¹ Georgios Kollias ² Tsuyoshi Idé ² Payel Das ² Naoki Abe ² Aurélie Lozano ² Qi Li¹

¹Iowa State University ² IBM Research, T. J. Watson Research Center

Graph Representation Learning

• **Graph Neural Networks (GNNs)** are models that learn structural node representation via message passing between the nodes of graphs.

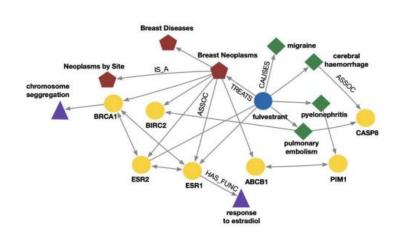

$$G = (V, E), \quad f(G) \to \mathbb{R}^d$$

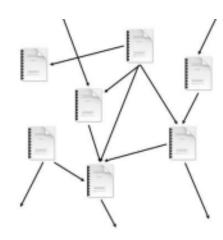

Graph Representation Learning

• **Graph Neural Networks (GNNs)** are models that learn structural node representation via message passing between the nodes of graphs.

$$G = (V, E), \quad f(G) \to \mathbb{R}^d$$

• Graph Neural Networks(GNNs) are powerful at node classification because it learns node representations directly from k hop neighbors

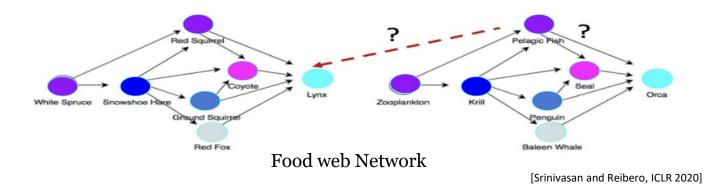



Original Graph

Application Of Directed Link Prediction

- Directed Link Prediction has many real world applications
- For example: Recommender Systems, Citation Networks, Biomedical knowledge graph

Biomedical knowledge graph

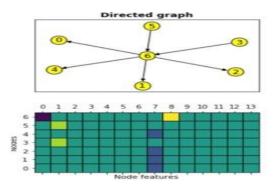

Citation network

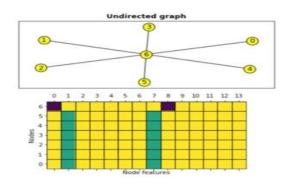
Motivation

 Link prediction require a joint representation learning of the linked nodes

Motivation

- Link prediction require a **joint representation learning** of the linked nodes
- Graph Neural Networks(GNN), can not learn the latent link information between the linked nodes
- Nodes in Identical subgraphs get same representation(GIN, Xu et al. 2019)

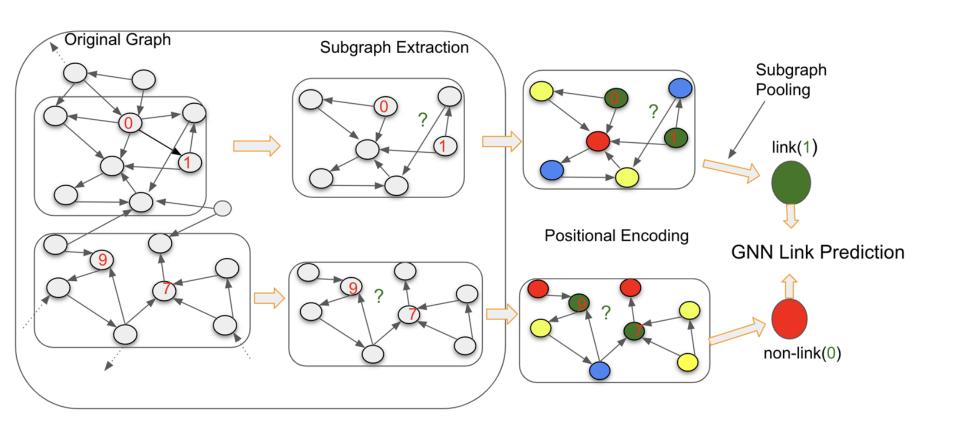


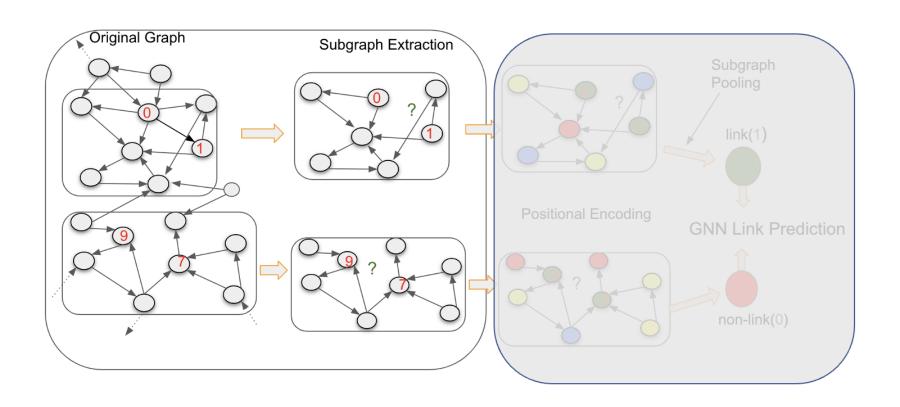


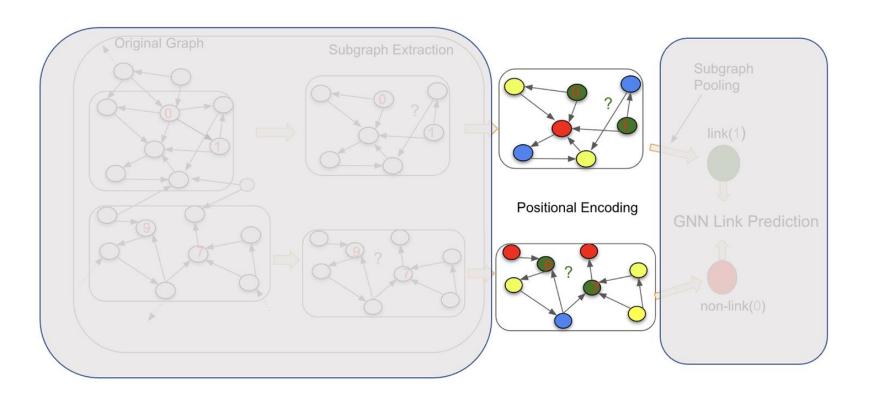
Positional encoding Based on Singular Value Decomposition(SVD)

- Positional Encoding: Provides additional features that can help to get the structural information of a link
- SVD based matrix factorizations is **valid** positional encoding and can capture **directionality**

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$


Our Proposed Direction aware Positional Encoding


- For the nodes of the k hop subgraph around a directed link $u \mapsto v$, we computed **Truncated SVD** and **ranking score using HITS algorithm**.
 - o **Truncated SVD** is an approximation of the $U_d \in \mathbb{R}^{n \times d}$ of its left singular subspace corresponding to its top singular value
 - **HITS algorithm** to compute ranking score using, the authority value a and hub value b


$$\mathbf{a}, \mathbf{h} \in \mathbb{R}^n$$


• Get the Positional encoding of node [i] around $u \mapsto v$ by concatenating Truncated SVD and HITS value and use it as initial feature during GNN training

$$pe[i] = (hits[i]||svd[i]) \in \mathbb{R}^{d+2}$$

Experimental Results on directed link prediction

AUC performance for Directed Link Predition, when both truncated SVD and Rank positional encodings are used.

Model	Cornel	Texas	Wisconsin	Citeseer	CoraML
GCN(SVD + Rank)	86.16 ± 1.52	87.27 ± 2.77	82.13 ± 2.26	87.97 ± 0.57	88.15 ± 0.73
GIN(SVD + Rank)	88.01 ± 2.75	90.72 ±2.24	90.72 ± 1.68	89.12 ± 0.57	88.28 ± 0.25
SAGE(SVD + Rank)	88.24 ± 3.2	88.88 ± 2.72	89.13 ± 2.27	87.47 ± 1.97	87.92 ± 0.23
DGCN	82.24 ± 3.47	84.01 ± 1.67	82.89 ± 1.74	82.02 ± 0.8	82.92 ± 0.37
DiGraphIB	81.93 ± 1.65	82.72 ± 1.58	81.67 ± 1.74	84.89 ± 0.76	85.27 ± 0.62
Magnet	83.32 ± 2.71	83.01 ± 1.72	84.7 ± 1.92	86.72 ± 1.42	85.77 ± 0.42
DGCN(SVD + Rank)	89.24 ± 2.47	87.04 ± 1.92	87.21 ± 1.74	88.75 ± 0.66	90.21 ± 1.37
DiGraphIB(SVD + Rank)	87.58 ± 2.17	87.01 ± 2.87	88.11 ± 2.74	89.82 ± 0.68	89.2 ± 0.58
Magnet(SVD + Rank)	$\textbf{91.98} \pm \textbf{1.62}$	89.98 ± 2.91	$\textbf{90.82} \pm \textbf{1.08}$	91.66 ± 0.81	$\textbf{93.85} \pm \textbf{1.27}$

Conclusion

- Adding direction aware positional encoding can help GNNs to predict directed link
- Both **Truncated SVD** and **ranking score using HITS algorithm** can make GNNs more powerful for directed link prediction

Thank You for Listening!